

Paul Van den Hof

Doctoral School Lyon, France, 11 April 2024

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl



**European Research Council** 

Consider a network where all nodes are measured.

### **Question:**

Where to allocate external excitation signals in order to guarantee generic identifiability of the network model set?

Graphical approach to cover the network graph with pseudotrees<sup>[1]</sup>

[1] X. Cheng, S. Shi and P.M.J. Van den Hof, IEEE Trans. Automatic Control, Febr 2022.



**Definition Pseudotree:** 

A connected simple directed graph with number of vertices  $\geq 2$  is called a (directed) **pseudotree** if for all vertices *i*, the number of in-neighbors is  $\leq 1$ .

Two typical examples:





cycle with outgoing tree

#### **Observation:**

An external signal added to any of the roots (green) reaches all vertices in the pseudotree

## Strategy:

- Cover the graph of a network with a set of **disjoint pseudotrees**
- Excite (one of the) root(s) of each pseudotree with an external excitation signal

## (Edge-) disjoint pseudotrees

Two pseudotrees are (edge-) disjoint if

- They do not share any edges, and
- All outgoing edges of a vertex belong to the same pseudotree

• Edges are **disjoint** and all out-neighbours of a node are in the same pseudo-tree



• Any network graph can be decomposed into a set of disjoint pseudo-trees

## Synthesis solution for network excitation

A network model set  ${\boldsymbol{\mathcal{M}}}$  is generically identifiable if

- its graph can be covered by  $oldsymbol{K}$  disjoint pseudotrees, and
- there are  $oldsymbol{K}$  independent external signals entering at a root of each pseudotree.

### **Sketch of Proof:**

# Let $\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_K$ be disjoint pseudotrees that cover all the edges of the graph $\mathcal{G}$ and $\tau_k$ be an excited root node in pseudotree $\mathcal{T}_k$ . The definition of disjoint pseudotrees implies that

- 1. two disjoint pseudotrees cannot share common root nodes, i.e.,  $\tau_i \neq \tau_j$ , for all  $i \neq j$ ;
- 2. the in-neighbors of each node in  $\mathcal{G}$  should be in distinct pseudotrees;
- 3. paths in different disjoint pseudotrees are vertex-disjoint, if they have no common starting or ending nodes.

The above three points guarantees that, for any node j in  $\mathcal{G}$ , there exist  $|\mathcal{N}_j^-|$  vertexdisjoint paths from the set  $\{\tau_1, \tau_2, ..., \tau_K\}$  to  $\mathcal{N}_j^-$ , where  $\mathcal{N}_j^-$  is the set of in-neighbors of j. The result holds for all nodes in  $\mathcal{G}$ , thus generic identifiability of  $\mathcal{M}$  follows.

## Example: 5 node network (revisited)



When discarding the present external signals, the graph becomes:



The graph can be covered by Two disjoint pseudotrees:

Note: this covering is non-unique!





## Example: 5 node network (revisited)



When discarding the present external signals, the graph becomes:



Two independent excitations guarantee network identifiability:

One of  $v_2/r_4/v_3$  and  $r_5$  would be sufficient



If parametrized noise models are included in the model set, then we use an extended graph, including the white noise disturbance inputs as nodes:



External signals  $r_2/r_4/r_3$  and  $r_5$  guarantee generic identifiability



### Where to allocate external excitations for network identifiability?





Start from an elementary covering (all outgoing edges from a node in one pseudotree)

The merging can be done through an automated algorithm

### **Merging algorithm**

Denote a set

$$\mathbb{M} = \{1, 0, \varnothing\}.$$

Let  $\Pi = \{\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_n\}$  be a disjoint pseudotree covering of a directed graph. The **characteristic matrix** of  $\Pi$  is denoted by  $\mathscr{M} \in \mathbb{M}^{n \times n}$ , whose (i, j)-th entry is defined as

$$\mathcal{M}_{ij} = \begin{cases} 1 & \text{if } \mathcal{T}_i \text{ is mergeable to } \mathcal{T}_j; \\ \varnothing & \text{if } V(\mathcal{T}_j) \cap V(\mathcal{T}_i) = \emptyset; \\ 0 & \text{otherwise.} \end{cases}$$

 $\begin{array}{ll} \text{and define a commutative operator on } \mathbb{M} \text{ according to } & 1 \odot 1 = 1, \ 1 \odot 0 = 0, \ 1 \odot \varnothing = 1, \\ & 0 \odot 0 = 0, \ \varnothing \odot 0 = 0, \ \varnothing \odot \varnothing = \varnothing. \end{array} \end{array}$ 

defining a componentwise multiplication operation on rows of  $\mathcal M$ 

### Start of the algorithm: elementary covering





### **Merging algorithm**

Merging of the i-th pseudotree into the j-th one now comes down to

- Replace row j by  $\mathscr{M}_{i\star} \odot \mathscr{M}_{j\star}$
- Replace column j by  $\mathscr{M}_{\star i} \odot \mathscr{M}_{\star j}$
- $\bullet$  Remove the i-th row and column of  $\mathscr{M}$

## Ordering of the merging:

• Select the row with a (single) 1 entry and a maximum number  $\varnothing$  entries, and merge this row;

At the end, the matrix  ${\mathscr M}$  will have no more 1 entries.



### Start of the algorithm: elementary covering

Given a graph  ${\mathcal G}$  with the adjacency matrix  $A({\mathcal G}).$  Denote

$$a_{ij} = \left( [A(\mathcal{G}) + I\mathfrak{i}]_{\star i} \right)^{\top} [A(\mathcal{G}) + I\mathfrak{i}]_{\star j},$$

The characteristic matrix  $\mathcal{M}$  is formulated as follows:  $\mathcal{M}_{ii} = 0$  for all i, while for  $j \neq i$ :

$$\mathcal{M}_{ij} = \begin{cases} 1, & \operatorname{Re}(a_{ij}) = 0, \text{ and } \operatorname{Im}(a_{ij}) \neq 0, \text{ and } [A(\mathcal{G})]_{ij} \neq 0. \\ 0, & \operatorname{Re}(a_{ij}) \neq 0 \text{ or } \{\operatorname{Re}(a_{ij}) = 0, \text{ and } \operatorname{Im}(a_{ij}) \neq 0, \text{ and } [A(\mathcal{G})]_{ij} = 0\}. \\ \varnothing, & a_{ij} = 0, \end{cases}$$



#### Where to allocate external excitations for network identifiability?



Pseudo-tree merging algorithm



If white noises  $e_2$  and  $e_5$  are present, then it suffices to excite  $r_1$ ,  $r_3$  and  $r_4$ .



### Where to allocate external excitations for network identifiability?

After selecting the roots of the pseudotrees:

Verify whether all root excitations are necessary for satisfying the path-based identifiability condition (# vertex disjoint paths)



Since the path-based condition is satisfied for all nodes in pseudotree 3, even without the presence of  $r_3$ , this excitation can be removed.



## **Algorithm example**



# **Algorithm example**



### Summary identifiability synthesis algorithm

> Attractive graphical approach for verifying generic identifiability conditions.

- As well as for synthesizing the required experimental setup (allocating external signals), starting from existing disturbances.
- > The results also apply to the situation of non-parametrized / fixed modules in  $\mathcal{M}$ ; The fixed modules can then be excluded from the graph-covering.
- A less conservative way of including fixed modules is available by extending the concept of a pseudotree, to a graph with at most one parametrized link from an in-neighbor <sup>[1]</sup>; this is implemented in the toolbox.

[1] Dreef et al., L-CSS, 2022.

## **Discussion identifiability**

If node signals can not all be measured? (partial node measurement)

- Situation can be treated as separate problem<sup>[1],</sup> leading to statements that for identifiability each node should be measured or excited.
- Situation can partly be analysed by using the concept of immersion, i.e. removing a non-measured node from the network while keeping the other node signals invariant.<sup>[2]</sup>



[1] Bazanella et al., CDC 2019; Mapurunga et al., IFAC POL, Jan 2021; L-CSS, 2022; Cheng et al., IEEE-TAC, under review, 2022.